Сверхкритический СО₂ как перспективная среда для получения новых материалов мембран и электродов топливных элементов

Д.О. Коломыткин, И.В. Эльманович, М.С. Кондратенко, А.Ю. Николаев, <u>М.О. Галлямов</u>

Физический факультет МГУ / ИНЭОС РАН

Общая схема МЭБ ТЭ

определяется изменением свободной энергии $\Delta G = \Delta H - T \Delta S B$ химической реакции (1.23 В при 20° С для H₂/O₂). Полимеры присутствуют и в мембране, и в электродах тех ТЭ, которые работают при температурах до 200 °C

ЭДС элемента

Характеристики полимерных МЭБ

Продукт GORE PRIMEA серия 56 (стационарные энергоустановки), компания W.L. Gore & Associates, один из лидеров рынка Хорошие вольтамперные характеристики (высокие мощности)

Хорошие ресурсные характеристики (срок службы более 25 000 часов)

W. L. Gore & Associates ©

Преимущества ТЭ

- Теоретически, бо́льшая эффективность, чем у тепловых машин
 - На практике существуют потери, поэтому эффективность производства электроэнергии: 40-50%
- <u>Теоретически</u>, при непрерывной подаче топлива и окислителя от внешнего источника, время непрерывной работы не ограничено (в отличие от других ХИТ: гальванических элементов и аккумуляторов)
 - На практике протекают процессы деградации, поэтому максимальные времена работы: десятки тысяч часов
- Топливо: <u>водород</u> (продукт реформинга природного газа, биогаза, метанола и т.п.), <u>метанол</u>
- Окислитель: кислород, воздух

Интерес к ТЭ, прогнозы использования источников энергии

ТЭ – звено в цепи поставки энергии потребителю (транспортные, стационарные и портативные приложения)

Транспортные приложения ТЭ

- Автомобильные
 - легковые автомобили (Audi Q5-FCEV, BMW 1 Series FCHE, Mercedes-Benz F-Cell B-Class, Fiat Panda HyTRAN, GM HydroGen4, Honda FCX Clarity, Toyota FCHV-adv, …)
 - автобусы (Mercedes-Benz Sprinter FC van, Mercedes-Benz Citaro FC bus, Toyota FCHV-BUS, аэропортовые шаттлы, ...)
 - погрузчики, транспортировщики (склады)
- Железнодорожные
 - локомотивы (BNSF FC-Locomotive)
 - бортовые энергоустановки
- Водные
 - прогулочные и пассажирские суда (Nemo H2, Zemships, Canal boat, Tuckerboot, ...)
 - подводные лодки (проект 212, проект 214)
- Авиационные
 - БПЛА (Hyfish, Horizon)
 - бортовые энергоустановки (Boeing, Airbus)

Специальные приложения (бесшумность)

Немецкая океанская ударная (attack) подводная лодка проекта 212 с полимерными топливными элементами Siemens SINAVYCIS PEM 9 × 34 кВт ВZМ34. На вооружении (совместно с проектом 214, тоже на ТЭ, PEM 2 × 120 кВт ВZМ120) флотов Германии, Италии, Греции, Ю. Кореи, Португалии, Турции (план.) в количестве по несколько шт. лодок Всего: 12+12 лодок (построено); автономное плавание: 12 недель; подводное плавание без шноркеля: 3 недели; 12 торпед, ракеты, мины

Когенерационные (СНР) энергоустановки

- Panasonic & Tokyo Gas Co. + Toshiba & Osaka Gas / Nichigas: РЕМ ENE-FARM (>30 тыс. шт., 0.75 кВт, \$34000↓\$20000) to compare with Honda's ECO-WILL (десятки тыс. шт., 1 кВт, \$9000)
- ClearEdge Power: PEM FC (5 кВт), PA FC (400 кВт)

Технические цели Department of Energy (DOE), США, для 1–10 кВт СНР стационарных энергоустановок, работающих на газе

Туре	2012	2015	2020
Electrical efficiency at rated power	40%	42.5%	45%
CHP energy efficiency	85%	87.5%	90%
Factory cost	\$650/kW	\$550/kW	\$450/kW
Transient response (10%–90% rated power)	4 min	3 min	2 min
Start-up time from 20 °C ambient temperature	45 min	30 min	20 min
Degradation with cycling	0.7%/1000 h	0.5%/1000 h	0.3%/1000 h
Operating lifetime	30 000 h	40 000 h	60 000 h
System availability	97.5%	98%	99%

Когенерационные (СНР) энергоустановки

 Panasonic & Tokyo Gas Co. + Toshiba & Osaka Gas / Nichigas: РЕМ ENE-FARM (>30 тыс. шт., 0.75 кВт, \$34000↓\$20000) to compare with Honda's ECO-WILL (десятки тыс. шт., 1 кВт, \$9000)

Единая энергетическая сеть России

Характеристики полимерных МЭБ

Продукт GORE PRIMEA серия 56 (стационарные энергоустановки), компания W.L. Gore & Associates, один из лидеров рынка Хорошие вольтамперные характеристики (высокие мощности)

Хорошие ресурсные характеристики (срок службы более 25 000 часов)

W. L. Gore & Associates ©

Потери

$$U(i) = \mathcal{E}_{\text{emf}} - \Delta \eta_{\text{ohm}}(i) - \Delta \eta_{\text{act}}(i) - \Delta \eta_{\text{transp}}(i)$$

Общие требования к мембране для снижения потерь и повышения ресурса

- Высокая протонная проводимость
- Отсутствие электронной проводимости
- Долговременная механическая стабильность, в том числе, в присутствии воды
- Малая проницаемость для газовых реагентов
- Долговременная химическая стабильность (H₂O₂, кислотное окружение)

Перфторированные сульфокислоты (Нафион и др.)

- Механически стабильны и достаточно газонепроницаемы при эквивалентном весе (ЭВ) 1000-1100 г/моль, и толщине до 25 мкм
 - Для широкого практического применения требует доработки долговременная стабильность, особенно тонких мембран при малом ЭВ
- (Электро)химически стабильны и инертны
- Высокая протонная проводимость около 0.1 См/см, (но чувствительная к содержанию воды, рабочие температуры до 80 °С)
- Высокая стоимость производства
- Высокий кроссовер (для метанольных ТЭ)

Сравнение микроструктуры

Структура протонпроводящих каналов в матрице Нафиона и сульфированного полиэфиркетона

- широкие каналы
- более разделенные
- менее разветвленные
- хорошая связанность
- маленькое расстояние между -SO₃⁻ / -SO₃⁻

- узкие каналы
- менее разделенные
- более разветвленные
- тупиковые каналы
- большое расстояние между -SO₃⁻ / -SO₃⁻
- pK_a ~ -1

Дизайн активных слоев электродов

Слева: Структура классического АС с жидким электролитом с ПТФЭ в качестве связующего Справа: "тонкопленочный" дизайн с твердополимерным электролитом. Показаны: дисперсные частицы сажи (серым) с нанесенными платиновыми наночастицами (черным), фторполимерные частицы ПТФЭ и покрытие Нафиона. Схематично указаны пути транспорта кислорода, протонов и электронов

Полибензимидазолы

Синтез:

в полифосфорной кислоте, реагенте Итона и т.п.

PureCell 400, ClearEdge Power

Особенности ПБИ-систем в сравнении с ФКТЭ с неорганической матрицей

- Лучшее удержание электролита в матрице в силу химического сродства фосфорной кислоты к полибензимидазолам => упрощенные процедуры запуска / остановки
- Меньшие рабочие температуры (160-180 °C, а не 200 °C) => бо́льшие омические потери в электролите
- Больше допуск по перепаду давления реагентов => в принципе, возможно увеличение характеристик за счет повышения давления
- Требует решения проблема увеличения ресурса работы

Вольтамперные характеристики МЭБ BASF

МЭБ Celtec-P 1000 разработки Pemeas (теперь принадлежит BASF) и МЭБ Celtec-P 1100W производства BASF: при 160 °C и подаче водорода/воздуха (слева), а также при 180 °C и подаче реформата/воздуха (справа). Активная область 45 см², стехиометрия реагентов: 1,2 (анод)/2,0 (катод) при подаче водорода/воздуха и 1,4 (анод)/5,0 (катод) при подаче реформата/воздуха, атмосферное давление, без увлажнения. Состав реформата: 71% H₂, 27% CO₂, 2% CO.

Долговременная стабильность МЭБ BASF

Ресурсные характеристики МЭБ Celtec-P 1000 при непрерывном тестировании (слева), а также сопоставление с ресурсными характеристиками МЭБ Celtec-P 1100W в 100 циклах запуска-остановки (справа). Активная область 45 см², температура 160 °C, стехиометрия подачи реагентов: 1,2 (анод), 2,0 (катод), атмосферное давление. Для Celtec-P 1000: падение напряжения в долговременных непрерывных испытаниях менее 6 мкВ/час, около 20 тыс. часов непрерывной работы (слева). При циклических испытаниях (справа): каждый цикл составляет 2 часа работы и 2 часа простоя с продувкой азотом после выключения.

Дизайн активных слоев

Источник	Характеристики мембраны	НРЦ	U@j=0.2A/см²	U@j=0.4A/см²
Kongstein et al. // Energy 2007 , 32, 418-422	40 мкм, ПБИ производ. Техн. Унив. Дании	0.83 B	0.67 B	0.62 B
Liu et al. // Electrochem. Commun. 2007 , 9, 135–141	35 мкм, ПБИ	-	0.73 B	0.68 B
Zhai et al. // J. Power Sources 2007 , 164, 126–133; Zhai et al. // J. Electrochem. Soc. 2007 , 154, B72–B76	36 мкм, ПБИ согласно пат. US 5 525 436	0.91 B	0.71–0.73 B	0.67–0.70 B
Zhai et al. // J. Power Sources 2007 , 169, 259–264	32 мкм, комп. ПБИ : Нафион (80% : 20%)	-	0.71 B	0.66 B
Pan et al. // J. Power Sources 2007 , 172, 278–286	ПБИ, полив из ДМАА	0.90 B	0.67 B	0.65 B
Li et al. // J. Power Sources 2008 , 183, 69–75	30 мкм, композит ПБИ : Cs _{2.5} H _{0.5} PMo ₁₂ O ₄₀	0.93 B	0.69 B	0.63 B
Choi et al. // J. Power Sources 2008 , 178, 677–682	поливинилимидазол+фторполимеры, ком.	0.90 B	0.67 B	0.63 B
Yu et al. // Fuel Cells 2009 , 9, 318–324	пара-ПБИ	0.94 B	0.72 B	0.66 B
Mader et al. // Macromolecules 2010 , 43, 6706–6715	Сульфированный ПБИ	0.82 B	0.72 B	0.67 B
Xu et al. // J. Mater. Chem. 2011 , 21, 6014–6019	50 мкм, ПБИ + Cs-соли гетерополикислот	0.99 B	0.69 B	0.62 B
Xu et al. // J. Mater. Chem. 2011 , 21, 11359–11364	50 мкм, ПБИ + сульфиров. оксид графита	0.93 B	0.67 B	0.60 B
Lobato et al. // J. Membrane Sci. 2011 , 369, 105–111; Lobato et al. // J. Power Sources 2011 , 196, 8265–8271	60 мкм, композит ПБИ + ТіО ₂	0.83 B	0.67 B	0.63 B
Mader & Benicewicz // Fuel Cells 2011 , 11, 212–221; Mader & Benicewicz // Fuel Cells 2011 , 11, 222–237	Сополимеры сульфиров. ПБИ и пара-ПБИ	0.95 B	0.74 B	0.68 B
Wu et al. // Fuel Cells 2011 , 11, 620–625	40 мкм, композит ПБИ + Sb _{0.2} Sn _{0.8} P ₂ O ₇	0.93 B	0.73 B	0.66 B
Geormezi et al. // J. Power Sources 2011 , 196, 9382–9390	80 мкм, со-полиэфиры	0.96 B	0.73 B	0.64 B
Gulledge et al. // J. Polym. Sci. A: Polym. Chem. 2012, 50, 306	Изомер АБПБИ	0.94 B	0.71 B	0.65 B
Kondratenko et al. // Int. J. Hydrogen Energy 2012 , 37, 2596	ПБИ-О-ФТ	0.90 B	0.69 B	0.61 B
Kondratenko et al. // Int. J. Hydrogen Energy 2012 , 37, 2596	АБПБИ	0.91 B	0.68 B	0.60 B
Suryani et al. // J. Membrane Sci. 2012 , 403–404, 1–7	50 мкм, комп. ПБИ + SiO ₂	0.99 B	0.68 B	0.62 B
Seel & Benicewicz // J. Membrane Sci. 2012 , 405–406, 57–67	Соп. пара-ПБИ и полифенилхиноксалина	0.97 B	0.74 B	0.69 B
Zeng et al. // Chem. Commun. 2013 , 49, 4655–4657; Zeng et al. // ACS Appl. Mater. Interfaces 2013 , 5, 11240	Мезопористый SiO ₂ , функционализ. ФК	1.03 B	0.80 B	0.70 B
Li et al. // Fuel Cells 2013 , 13, 832–842	Фторсодержащий ПБИ	0.81 B	0.73 B	0.68 B
Xiao et al. // Chem. Mater. 2005 , 17, 5328–5333	Аналог Pemeas	0.91 B	0.74 B	0.68 B
Schmidt & Baurmeister // J. Power Sources 2008, 176, 428–434	50–75 мкм, Pemeas	-	0.76 B*	0.73 B*
Neyerlin et al. // J. Power Sources 2008 , 176, 112–117	~100 мкм, коммерческая (Pemeas)	-	0.73 B*	0.70 B*

Сопоставление полимерных ТЭ

	На мембранах типа Нафион	На ПБИ-матрицах
рабочая температура	до 85 °С	160-180 °C
производимая мощность	больше (0.3 Вт/см ² @ j = 0.4 А/см ²)	меньше (0.24 Вт/см ² @ j = 0.4 А/см ²)
запуск	быстрый	медленный
требования к топливу	чистый водород (< 10 ppm)	допускаются примеси (в т.ч. СО до 3%)
ресурс работы	до 30 тыс. часов	до 20 тыс. часов
система охлаждения	сложнее	проще
регулирование баланса присутствия воды в МЭБ	увлажнение реагентов	не требуется

Отличия ТЭ на ПБИ-мембранах от Нафионовых систем

- Бо́льшая толерантность по отношению к СО (дешевое топливо) и отсутствие необходимости увлажнения реагентов
- Более простая конструкция => бо́льшая надежность и меньшая стоимость
- Бо́льшая эффективность использования тепла и более простая система охлаждения блоков
- Замедленная кинетика кислородной реакции => меньшая производительность, бо́льшие размеры электроустановки при той же мощности
- Бо́льшие времена запуска и выхода на режим

Вехи на пути к широкому практическому применению ТЭ

- Снижение стоимости МЭБ (технология и материалы)
 - улучшение вольтамперных характеристик
 - снижение использования платины
 - удешевление полимерных материалов
- Увеличение ресурса
 - долговременная стабильность мембран
 - стабильность материалов электродов
- Разработка ТЭ для температур около 120 °C
- Развитие ТЭ прямого окисления спиртов
 - повышение энергоемкости топлива на единицу объема

Возможные пути достижения

- Улучшение существующих технологий синтеза полимерных мембран
 - введение новых боковых цепей
 - иммобилизация кислотных групп
 - стабилизация концевых групп
 - оптимизация процедур сшивки
- Улучшение функциональности активных слоев электродов (новый дизайн)
- Путь: разработка и широкое использование в составе МЭБ композитных материалов (полимернеорганических и полимер-полимерных)

Фазовая диаграмма СО2

• Критическая точка: T_c = 31.1°C, P_c = 73.8 атм

> Прямой перевод из СК состояния в газовое без формирования жидкости

*Т*_с, температура

Установка для получения СК СО2

- 1 реакционная кювета,
- 2 жидкостной термостат,
- 3 подложка, подлежащая экспозиции,
- 4 вентили,
- 5 капилляры,
- 6 манометры,
- 7 ручной плунжерный генератор давления,
- 8 баллон с CO₂.

Схема прямого осаждения из СК СО₂

 $CO_2, T,$ высокое давление

пористая

матрица

материал

функциональный

декомпрессия после экспозиции

однородно импрегнированная матрица

Преимущества СК СО₂ как растворителя в процессах нанесения материалов на подложку

- Растворитель для многих органических соединений и некоторых полимеров
- Не является жидкостью (нет жидкой фазы при нормальных условиях, нет высыхающих капель, нет перемещений трехфазной границы, нет влияния капиллярных сил и сил поверхностного натяжения)
- Низкая вязкость, высокая скорость диффузии

Жидкий растворитель

Преимущества СК СО₂ как растворителя в процессах осаждения материалов

Пористая структура, жидкий растворитель, несмачивание

Пористая структура, жидкий растворитель, смачивание Пористая структура, СК растворитель, абсолютное смачивание без капиллярных сил

Общая схема МЭБ топливного элемента

H

ЭДС элемента определяется изменением свободной энергии в химической реакции окисления водорода 1.23 В при 20° С для H₂/O₂.

Электроды ТЭ: ГДС + АС

Углеродная ткань + напыленная дисперсия частиц PTFE и Pt @ C

Гидрофобизатор: Teflon AF 2400

- аморфный
- гидрофобный
- m : n = 13 : 87
- М_w ~ 300 кДа
- T_g ~ 240 °C
- ρ = 1.7 г/см³

Некоторые полезные свойства:

 • большой свободный объем ⇒ хорошая газопроницаемость

• оптически прозрачен в широком спектральном диапазоне (от ИК до УФ)

 низкие значения показателя преломления и диэлектрической проницаемости (вплоть до ГГц диапазона),

• химически стабилен к действию большинства растворителей и агрессивных сред

- термически стабилен (до 300 °C)
- растворим во фтор-растворителях и СК СО₂ (!)

Растворимость Teflon AF в CK CO₂

Пленки Teflon AF 2400 на пирографите

Нанометровая толщина: 4-8 нм • Низкая шероховатость: 0.4-0.6 нм (площади 0.5×0.5 мкм²) Высокая однородность и стабильность

(ВОПГ подложка)

M.O. Gallyamov *et al.* // *Langmuir* **2002**, *18(18)*, 6928-6934

Покрытие на шероховатой подложке

Пленка Teflon AF 2400

Ha углеродн. ткани Saati SCCG-5N / = 370 µm

Покрытие на шероховатой подложке

Пленка Teflon AF 2400

Ha углеродн. ткани Saati SCCG-5N / = 370 µm

Покрытие на шероховатой подложке

Пленка Teflon AF 2400

Ha углеродн. ткани Saati SCCG-5N / = 370 µm

Испарение капли воды на ткани, гидрофобизованной Saati SCCG-5N

Смачиваемость: анализ геометрии сидящей капли

Геометрия капли и ее контакта с подложкой

$$\theta' = \begin{cases} \arcsin\left(\frac{sh}{s^2/4 + h^2}\right) & h < s/2\\ \pi - \arcsin\left(\frac{sh}{s^2/4 + h^2}\right) & h > s/2 \end{cases}$$

$$S_a = \pi s^2 / 4$$

$$V = \pi h^3 \left(\frac{s}{2h\sin\theta} - \frac{1}{3}\right)$$

- Краевой угол (из геометрии, в приближении сферической капли)
- Площадь области контакта
- Объем капли

Возможные типы эволюции краевого угла для испаряющейся капли

Ресурсные испытания: долговременная экспозиция в воде или фосфорной кислоте

Гидроф<u>обизован</u>ая ткань

Образец сравнения: стандартная гидрофобизация с использованием дисперсии Teflon 30 N и последующим

Углеродная кань Дисперсия Teflon 30N Ткань с осажденной из раствора в СК СО₂ пленкой Teflon AF 2400 в воде

Средние краевые углы для различных образцов после завершения 1000 часовой экспозиции в воде

Измерения до ресурсных испытаний

Измерения после ресурсных испытаний *массовая доля гидрофобизатора

Результаты ресурсных испытаний

1 – после 1000 ч экспозиции в воде, ткань Saati + пленка Teflon AF 2400 film, отжиг
 2 – после 1000 ч экспозиции в воде, ткань Saati + пленка Teflon AF 2400 film, без отжига
 3 – после 1000 ч экспозиции в воде, образец сравнения (ткань Saati + покрытие Teflon30N)
 4 – после 1000 ч экспозиции в фосфорной кислоте, ткань Saati + пленка Teflon AF 2400, отжиг

5 – модель эволюции краевого угла

Результаты ресурсных испытаний

1 – после 1000 ч экспозиции в воде, ткань Saati + пленка Teflon AF 2400 film, отжиг

2 – после 1000 ч экспозиции в воде, ткань Saati + пленка Teflon AF 2400 film, без отжига

3 – после 1000 ч экспозиции в воде, образец сравнения (ткань Saati + покрытие Teflon30N)

4 – после 1000 ч экспозиции в фосфорной кислоте, ткань Saati + пленка Teflon AF 2400, отжиг

5 – модель эволюции краевого угла

Механическая стойкость

детектирована высокая стойкость покрытия Teflon AF 2400 (в сравнении со стандартным) после цикла механической стирки в присутствии детергента

Электроды ТЭ: ГДС + АС

Углеродная ткань + напыленная дисперсия частиц PTFE и Pt @ C

Типичный вид поверхности АС

Напыленная дисперсионная смесь частиц Pt @ C (Vulcan XC 72r) И ПТФЭ как связующего

Elmanovich et al. // Int. J. Hydrogen Energy. 2013, 38, 10592

Основные ориентиры

- Снижение загрузки платины в электродах
 - Повышение эффективности использования платины
 - <u>Дизайн структуры и состава</u> (введение добавок) активных слоев: <u>расширение эффективной области трехфазной</u> <u>границы</u>, снижение потерь в активных слоях, устранение эффектов «отравления»
- Уменьшение интенсивности деградационных процессов
 - Подбор стабильного электропроводящего носителя (не углеродного?), прочно удерживающего платиновые частицы
 - Анализ влияния других компонент активных слоев (полимерные гидрофобизаторы, различные добавки) на деградационные процессы

Дизайн активных слоев

Концепция автоматической перколяции посредством тонкопленочного дизайна Elmanovich et al. // Int. J. Hydrogen Energy. 2013, 38, 10592

Elmanovich et al. // Int. J. Hydrogen Energy. 2013, 38, 10592

Тестирование в МЭБ

Мембрана: ПБИ (из МЭБ Celtec P-1000) ГДС: углеродная бумага Toray TGP-H-090 (280 мкм) АС: катализатор JMFC HiSPEC 3000 с пленкой Teflon AF, нанесенной из раствора в ск CO₂

Производительность МЭБ с Teflon AF в AC

Импедансная спектроскопия

Эквивалентная цепь с длинной линией для моделирования распределенного характера импеданса активного слоя катода, включая сопротивление мембраны (R_m), распределенное омическое сопротивление активного слоя катода (R_{el,i}), поляризационное сопротивление на катоде (R_{ct,i}), емкость границы раздела катода (C_i), индуктивность контактов (L)

Kondratenko et al. // Int. J. Hydrogen Energy. 2012, 37, 2596–3602

Распределенное протонное сопротивление в АС

проникновение электролита в АС при высоких степенях тефлонизации Elmanovich *et al.* // Int. J. Hydrogen Energy. **2013**, 38, 10592

Емкость границы раздела АС катода

Индикатор ограниченного проникновения электролита в АС при высоких степенях тефлонизации Elmanovich *et al.* // *Int. J. Hydrogen Energy.* **2013**, *38*, 10592

Поляризационные кривые, *iR*-коррекция

доступность Pt

Elmanovich et al. // Int. J. Hydrogen Energy. 2013, 38, 10592

Оптимальные количества фторполимера в АС

- Дисперсионный дизайн:
 - 16%, не менее
 [Mazur et al. // J. Appl.
 Electrochem. 2011,
 41, 1013–1019]
 - до 40% [Mamlouk & Scott // Int. J. Energy Res. 2011, 35, 507-519]
- Тонкопленочный дизайн:
 - **3-5%** [наша работа*]

*Elmanovich et al. // Int. J. Hydrogen Energy. 2013, 38, 10592

Растворимый в СК СО₂ прекурсор платины

Table 3. Solubility of Pt(cod)(me)2 in Carbon Dioxide

temperature (K)	pressure (MPa)	CO ₂ density (kg m ⁻³)	solubility (mg cm ⁻³)
333	13.9	556.4	3.14
333	15.0	604.1	4.36
333	16.1	640.5	5.81
353	14.0	383.4	1.81
353	15.0	427.2	2.96
353	16.0	468.4	3.98

Aschenbrenner *et al.* // *Ind. Eng. Chem. Res.* **2008**, 47, 3150

(1,5-циклооктадиендиметил) платина(II), $C_8H_{12}Pt(CH_3)_2$, коммерческий продукт Aldrich

Синтез катализаторов с помощью СК СО2

Синтез катализаторов в СК СО2

ПЭМ: выше степень однородности, более мелкие и более монодисперсные наночастицы Pt в сравнении с коммерческими аналогами (HiSPECs,Johnson-Matthey) при Одинаковой загрузке Said-Galiyev et al. // J. Solid State Electrochem. 2011, 25, 623-633

Геометрические параметры наночастиц

diameter, nm

Синтез катализаторов в СК СО2

a) A, HiSpec 3000

б) H, HiSpec 4000

РДА: меньший размер нанокристаллитов Pt в сравнении с коммерческими аналогами (HiSPECs of Johnson-Matthey Co.) при одинаковой загрузке Pt / C (20% и 40%, соответственно)

Said-Galiyev et al. // J. Solid State Electrochem. 2011, 25, 623-633

Характеристики катализаторов

Электрохимически доступная удельная поверхность Pt для CKобразцов в сравнении с аналогами (HiSPECs of Johnson-Matthey Co.) при разной загрузке Pt / C (измерено по адсорбции водорода и CO)

Said-Galiyev et al. // J. Solid State Electrochem. 2011, 25, 623-

Производительность ТЭ с СК СО₂-катализаторами

Удельная поверхность Pt на единицу площади электрода: ~400 см²/ см² для ТЭ с СК СО₂катализатором ~500 см²/см² для ТЭ на Celtec MEA

Поляризационные кривые для ТЭ с катодом, содержащим синтезированный в СК СО₂ Рt катализатор, и референсного ТЭ (Celtec P-1000 MEA), 160 °C, H₂/воздух Grigor'ev et al. // Nanotechnologies in Russia **2011**, 6, 311

НРЦ для Celtec выше, поскольку был меньше кроссовер и больше удельная поверхность Pt, но производительность при 0,4 A/см² одинакова
Синтез сплавных катализаторов в СК СО₂

Смешанные прекурсоры -- Pt : Ni (1 : 1) сплавной катализатор

после отжига (800 °C)

до отжига (800 °C)

Синтез сплавных катализаторов в СК СО2

детектирование биметаллических частиц сплава Pt/Ni(1:1), 2-5нм

Морфология частиц Pt в электродах PEMEAS до и после старения в ФК (12 ч, 160 °C)

Исходно: <d> = 3.4 ± 0.9 нм S_{уд} = 70 м²/г Старение при 0.9 В: Старение при 0.9 В, $<d>= 5.7 \pm 1.9$ нм в ФК добавлен ПБИ: $<d>= 40 \text{ m}^2/\text{г}$ $<d>= 6 \pm 2 \text{ нм}$ $S_{\nu\pi} = 40 \text{ m}^2/\text{г}$

Размеры частиц Pt в электродах PEMEAS до и после старения в ФК (12 ч, 160 °C)

Исходно: <d> = 3.4 ± 0.9 нм S_{уд} = 70 м²/г

Старение при 0.9 В: Старение при 0.9 В $<d>= 5.7 \pm 1.9$ нм в ФК добавлен ПБИ: $S_{yg} = 40 \text{ m}^2/\text{г}$ $<d>= 6 \pm 2 \text{ нм}$ $S_{yg} = 40 \text{ m}^2/\text{г}$

Синтез катализаторов в СК СО2

Углеродные нанотрубки в качестве подложки: неполярный флюид --СК СО₂ -- способен эффективно служить в качестве дисперсионной среды для сравнительно гидрофобных нанотрубок, так же как и для иных гидрофобных частиц углеродных носителей (графитизованная сажа, СИБУНИТы, и т.д.) Grigor'ev et al. // Nanotechnologies in Russia 2011, 6, 311-322

Осаждение и восстановление (Pt(CH₃)₂COD) на ВОПГ

Осаждение $Pt(CH_3)_2COD$ островков из СК CO₂ на ВОПГ, восстановление Т и H₂, размер: 4 × 4 мкм² (a–c), 2 × 2 мкм² (d–f), черта: 500 нм, палитра: 30 нм

Осаждение и восстановление (Pt(CH₃)₂COD) на ВОПГ

Распределение по размерам частиц Pt на ВОПГ, полученных разложением прекурсора PtMe₂COD, осажденного из раствора в СК СО₂

Elmanovich et al. // J. Nanopart. Res. 2012, 14, 733

Вinding energy, eV Спектры РФЭС Pt 4f_{7/2–5/2}: исходный ВОПГ (1, нет пиков) и ВОПГ с прекурсором PtMe₂(COD) после осаждения из раствора в СК CO₂ (2), после термического разложения (3), и после восстановления водородом (4).

Контроль восстановления $Pt(CH_3)_2COD$ в реальном времени

Восстановление осажденных из СК СО₂ островков Pt(CH₃)₂COD на ВОПГ в режиме реального времени, контроль методом ССМ, восстановление потоком H₂, 5 часов. Размер кадра: 3 × 3 мкм², масштабная линия: 500 нм, палитра высот: 30 нм

Самоорганизация XF_nH_mYблоксополимеров

Приготовлены в группе прив.-доц., д-ра, Doris Pospiech (Leibniz-Institut für Polymerforschung Dresden e.V.)

PMMA/PsfMA (mol) : 73 / 27, $M_{\rm n} = 26\ 200, M_{\rm w} = 28\ 900$

Результаты ССМ: самоорганизация ХF_nH_mY-блоксополимеров

Медленная декомпрессия

Мицеллы XF_nH_m , Y на слюде, осаждение из растворов в СК CO₂, Размер кадра : 4 × 4 мкм² (a, b), 2 × 2 мкм² (c, d), черта: 500 нм, высоты: 250 нм

ПЭМ: ХF_nH_mY-блоксополимеры

Мицеллы, нагруженные Pt, как материал для AC

90

60

30

PsfMA block PMMA block H₃C

Фторполимерная фаза в окрестности заведомо каждой Pt частицы

Темплатирование подложек мицеллами с прекурсором

Инкапсуляция металла в мицеллы при постепенном восстановлении прекурсора

Темплатирование подложек мицеллами с прекурсором

Постепенный рост частиц из растворимого в СК СО2 прекурсора

Разложение W(CO)₆ в CK CO₂ в присутствии кислорода

Аморфные частицы нестехиометрических оксидов вольфрама (по данным РДА после отжига / кристаллизации)

Осаждение платины на полученные дисперсные частицы WO_{3-х}

Высокая поверхностная плотность при массовой загрузке в единицы процентов

Общая схема МЭБ топливного элемента

H

ЭДС элемента определяется изменением свободной энергии в химической реакции окисления водорода 1.23 В при 20° С для H₂/O₂.

Имитация Нафиона для ФК ТЭ

1 nm

charge

carrier

: H,O

NAFION

вместо ПБИ

полиолефины / кремнезем / Н₃РО₄ – композитные мембраны с пространственно неоднородной структурой

OEt OEt O-SI-OEt OEt OEt EtO EtO EtO⁻ OFt

C₂H₅O-P-C₂H₄-O-Si-OC₂H₅ C₂H₅O C₂H₅Ó

Сравнительная производительность

Кривые напряжение *U* / плотность тока *j* для МЭБ, собранных с различными матрицами для разных времен тестирования и разных температур. Референсная типичная кривая для АБПБИ мембран (160 °C, с теми же электродами) показана пунктиром

Gruzd et al. // Int. J. Hydrogen Energy 2013, 38, 4132

Неоднородность структуры сохраняется после долговременного тестирования

Gruzd et al. // Int. J. Hydrogen Energy 2013, 38, 4132

Дальнейший анализ предоставляемых этой средой новых возможностей представляется актуальным

Сверхкритический диоксид углерода – перспективная среда для создания новых материалов мембран и электродов ТЭ

Вывод:

Благодарности

- Коломыткин Д.О. (физфак МГУ)
- Эльманович И.В. (ИНЭОС / физфак МГУ)
- Кондратенко М.С. (физфак МГУ)
- Грузд А.С. (физфак МГУ)
- Николаев А.Ю. (ИНЭОС)
- Абрамчук С.С. (ИНЭОС)
- Саид-Галиев Э.Е. (ИНЭОС)
- Наумкин А.В. (ИНЭОС)
- Трофимчук Е.С. (химфак МГУ)
- Григорьев Т.Е. (ИНЭОС)