

Phase transformations behavior during operation of the phosphate and fluoride phosphate cathode materials for Li(Na)-ion batteries

Drozhzhin O.A.

Chemistry department of Lomonosov Moscow State University, Moscow, Russia Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology

Outline

1. Olivines

1.1 Li(Fe,Mn)PO₄ cathode materials

1.2 Li(Fe,Mn,Co)PO₄ cathode materials

2. Fluoride phosphates

2.1. Na₂FePO₄F and (Na,Li)₂FePO₄F

2.2 First desodiation of Na₂FePO₄F: unexpected behavior in Li-ion and

Na-ion cells

1. LiMPO₄ (M = Fe, Mn, Co)

	LiFePO ₄	LiMnPO ₄	LiCoPO ₄
E vs. Li/Li⁺, V	3.4	4.1	4.9
Specific energy density, Wh/kg	580	700	830
Volume change	6.7%	11%	7%

Padhi, A. K. et al, J. Electrochem. Soc., 1997, V. 144, 1188

2. LiFe_{1-y}Mn_yPO₄

D. B. Ravnsbæk, et al., Nano Lett., 2014, V. 14, pp. 1484–1491

N.V. Kosova, et al., Solid State Ionics, 2012, V. 225, pp. 564–569

3. Hydrothermal synthesis of Li(Fe,Mn,Co)PO₄

Composition	a (Å)	b (Å)	c (Å)	V(ų)	EDX (Fe:Mn)
LiFePO ₄	10.301(1)	5.9905(9)	4.6801(5)	288.81(4)	-
$LiFe_{0.9}Mn_{0.1}PO_4$	10.319(1)	6.000(1)	4.6869(8)	290.21(6)	0.91:0.09(2)
LiFe _{0.5} Mn _{0.5} PO ₄	10.371(2)	6.036(2)	4.7108(9)	294.92(7)	0.54:0.46(2)

4. Morphology of the obtained LiFe_{1-y}Mn_yPO₄

• Smallest direction of the particles corresponds to [010] in s.g. *Pnma*

• Thickness ≈ 150-200 nm

5. GCPL study of Li_{1-x}Fe_{1-y}Mn_yPO₄

 $LiMPO_4$:C:PVDF = 75:15:10, 1M $LiPF_6$ in EC:DMC = 1:1

Increasing electrochemical capacity at high discharge rates (10C, 20C) with increasing Mn content

6. GCPL study of Li_{1-x}Fe_{1-y}Mn_yPO₄

More recent results obtained using better synthetic route confirm previous data: $LiFe_{0.5}Mn_{0.5}PO_4$ exhibits better capacity retention at high rates of discharge

7. PITT processing

M. Vorotyntsev et al. J. Electroanal. Chem. 572 (2004) 299–307 Meethong N. et al., Chemistry of Materials, 2008, V. 20 p. 6189–6198

8. PITT results

Total (integral) *f*:

	LiFePO ₄	LiFe _{0.9} Mn _{0.1} PO ₄	LiFe _{0.5} Mn _{0.5} PO ₄
f_{charge}	0,10	0,19	0,39
$f_{ m discharge}$	0,22	0,25	0,42

9. Operando XRPD

a) For $Li_{1-x}FePO_4$, almost whole process of is two-phase (LFP and FP)

b) For $Li_{1-x}Fe_{0.9}Mn_{0.1}PO_4$, Li-deficient phase exhibits solid solution region L_xFMP for Δx appr. 0.2-0.3 per f.u.

c) For $Li_{1-x}Fe_{0.5}Mn_{0.5}PO_4$, charge:

(two-phase region between LFMP and L_xFMP) \rightarrow (solid solution L_xFMP) \rightarrow (two-phase region between L_xFMP and FMP).

discharge:

similar picture, but noticeable increase in the extent of the single-phase region is detected

10. E-x curves for Li_{1-x}Fe_{0.5}Mn_{0.5}PO₄

11. Possible explanation of the asymmetry in Li_{1-x}Fe_{0.5}Mn_{0.5}PO₄

Basis:

a) $r(Mn^{2+}) > r(Fe^{2+})$ in octahedral coordination (Shannon radii - 0.83 Å vs. 0.78 Å), but $r(Mn^{3+}) = r(Fe^{3+}) = 0.645$ Å. As a result, for the undoped LiMPO₄/MPO₄ transitions volume changes: *ca*. 11% for M = Mn and 7% for M = Fe.

b) in the intermediate region of x (approx. 0.4 < x < 0.6) in $\text{Li}_{1-x}\text{Fe}_{0.5}\text{Mn}_{0.5}\text{PO}_4$ reduction and oxidation of both Fe and Mn take place due to the random distribution of the Mn and Fe cations in the lattice

Drozhzhin, O.A. et al., Electrochimica Acta, 2016. v. 191,p. 149-157

12. Another examples of the asymmetry between charge/discharge

H. C. Shin et al., Electrochem. Commun. 10 (2008) 536–540 X. Rui et al., J. Power Sources 258 (2014) 19-38

13. Olivine-type Li(Fe_{1/3}Mn_{1/3}Co_{1/3})PO₄: extended solid solution region

14. Olivine-type Li(Fe_{1/3}Mn_{1/3}Co_{1/3})PO₄: extended solid solution region

Evolution of (211)/(020) olivine peaks at discharge:

Composition	ΔV	Specific energy	Cyclability
LiFePO ₄	6.7%	560 Wh/kg	Excellent
LiMnPO ₄	11%	700 Wh/kg	Poor; Jan-Teller effect for Mn ²⁺ /Mn ³⁺ , large volume change, Mn dissolution
LiCoPO ₄	7%	800 Wh/kg	Very poor; high voltage + antisite defects formation during charge/discharge
LiFe _{1/3} Mn _{1/3} Co _{1/3} PO ₄	5.3%	680 Wh/kg	Good (high-voltage electrolyte, e.g. 1M LiBF ₄ in TMS); under study

15. Operando Mössbauer spectroscopy: LiFePO₄

LiFePO₄, C/20 charge/discharge rate. Exposure ~ 30 min

16. Operando Mössbauer spectroscopy: LiFePO₄

17. Operando Mössbauer spectroscopy: LiFePO₄ vs. LiFe_{0.5}Mn_{0.5}PO₄

18. Na₂MPO₄F

Na_2MPO_4F (M = Fe, Co): layered crystal structure

- High capacity (124 mAh/g per one alkali cation) and working potential (3–5 V vs.
 Li/Li⁺ depending on couple M⁺²/M⁺³)
- May be used in both Li-ion and Na-ion batteries;
- Volume change ~ 4% between Na₂FePO₄F and NaFePO₄F

Ellis, B. L. et al., Nat. Mater., 6 (2007) 749 - 753

19. Na₂FePO₄F: solvothermal synthesis

Particle size ~ 100 nm; homogeneous distribution

20. (Na,Li)₂FePO₄F: Li⁺ vs. Na⁺ cycling

D_{chem} and the single-phase mechanism contribution are higher for the Li⁺ (de)intercalation \implies better rate capability in Li-ion cell

21. Na₂FePO₄F: first charge (Na⁺ deintercalation) in Li-ion and Na-ion cells

One process – different mechanisms?

22. Na₂FePO₄F: first charge (Na⁺ deintercalation) by PITT

Li-ion: solid-solution character of the *i-t* transients; Na-ion: two-phase

23. Na₂FePO₄F: first charge (Na⁺ deintercalation) by operando XRPD

(200)/(133)/(104) peaks (s.g. Pbcn)

24. Na₂FePO₄F: EDX after charge and soaking in different cells

Sample	Na/(Fe+P) expected from	Na/(Fe+P) from
	the charge passed	EDX, ± 0.05
Initial	1	1.04
Half-charged in Li-ion cell	0.75	0.50
Half-charged in Na-ion cell	0.75	0.77
Charged in Li-ion cell	0.5	0.09
Charged in Na-ion cell	0.5	0.67*
Soaked in 30-fold excess of Li-ion electrolyte for 10 h		0.71
Soaked in 30-fold excess of Li-ion electrolyte for 48 h		0.39
Soaked in 30-fold excess of Li-ion electrolyte for 168 h		0.21

Half of the all Na ions left the phase only at 50% SOC in Li-ion cell: Li_{0.5}NaFePO₄F instead of Na_{1.5}FePO₄F.

Full-charged: almost complete Na⁺ removal from the structure, $Li_{0.91}Na_{0.09}FePO_4F$ instead of NaFePO₄F. Such deep exchange could not be performed even after soaking the electrodes in 30-fold excess of electrolyte during 1 week.

25. (Na Li)_{1.5}FePO₄F: crystal structure refinement

Switching between electrochemically active alkali metal positions. In the **Na-ion** cell the majority of the Na cations are extracted from the position **Na2**, whereas in the **Li-ion** cell this position remains active only for the chemical Li for Na substitution, but the Na cations are removed from the position **Na1**, which has previously been considered electrochemically inactive

26. Acknowledgements

Chemistry department, Lomonosov MSU: Sumanov V.D. Tereshchenko I.V. Sobolev A.V. Presnyakov I.A. Antipov E.V.

Skoltech, Moscow: Abakumov A.M. Stevenson K.J.

Thank you for the attention!