Электрохимический синтез неплатиновых катализаторов реакции выделения водорода

Кузнецов В.В^{.1,} Гамбург Ю.Д^{.2,} Жалнеров М.В^{.1,} Жуликов В.В^{.2,} Баталов Р.С.¹

¹ Российский химико-технологический университет им. Д.И. Менделеева

² Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Особенности реакции катодного выделения водорода

Плотность тока обмена РВВ [А/см²] Т=298.15 К

- B 0.5 M H₂SO₄:
- Pt lg $i_0 = -3.0$
- Pd lg $i_0 = -3.2$
- Ni lg $i_0 = -5.2$
- B 4.0 M NaOH:
- Ni lg $i_0 = -5.8$

Основная идея: создать систему, состоящую из металлов, расположенных на «восходящей» и «нисходящей» ветвях «вулканообразной» зависимости

Jakšic M. M., Electrochimica Acta 11 (1984) 163

Скорректированная зависимость скорости РВВ от $\Delta G_{\rm adc}$

Непонятны причины столь сильного различия между Со и Ni с одной стороны и Re, Pd, Pt – с другой.

Высказано предположение о двух формах адсорбированного водорода на металлах.

J.K. Norskøv, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, and U. Stimming, J. Electrochem. Soc. 152, J23 (2005).

Сложность кинетики РВВ на системах, состоящих из металла группы железа и тугоплавкого металла

- Отсутствие четко выраженной тафелевской области → неопределенность в определении тока обмена
- Неопределенность определения $S_{\rm ист}$ катода \rightarrow сложно выделить собственно каталитический эффект

N.R. Elezovic et al., Electrochimica Acta **50** (2005) 5594

B.M. Jović et al., J. Serb. Chem. Soc. **77**(2) (2012) 211

Электрохимический способ получения

каталитических систем

	Компонент	Синтезируемая система						
• Использование	раствора, моль дм ⁻³	Со-Мо	Co–W	Ni–Mo	Fe–Mo	Ni–Re		
процессов «индуцированного» осаждения [*]	Сульфат Co(II) (или Ni(II), или Fe(III)	0.20	0.20	0.20	0.10	0.50		
 Металлы включаются в состав 	Молибдат (или вольфрамат, или перренат) натрия	0.04	0.10	0.04	0.04	0.05		
катодного осадка в	Лимоннная кислота	0.28	0.28	0.28	0.28	0.20		
нулевой степени окисления • Использование аммиачно-	Хлорид аммония	0.20	0.20	0.20	0.20			
	рН	6.0	6.0	8.0	3.0	6.0		
	Температура, °С	25	25	25	25	60		
цитратных растворов	Плотность тока осаждения А см ⁻²	0.05–0.1 5	0.05-0.15	0.05-0.15	0.05-0.15	0.05-0.2		
Landolt D., Plating and Surface Finishing 88 (2001) 70	Содержание тугоплавкого металла, ат. %	35–45	5-20	25-30	40–50	80–90		

Степени окисления металлов в катодном осадке (XPS исследования)

Фазовый состав полученных сплавов

• Сплавы Ni(Co,Fe)–Mo и Ni(Co,Fe)–W ренгеноаморфны, на дифрактограммах – лишь главный, сильно размытый рефлекс, например:

Кинетика выделения водорода на сплавах Со–Мо, полученных электролизом

Учет истинной площади поверхности электрода (Со–Мо)

Со-Мо 40.9 ат.% Мо

1.0 M NaOH, 20 мВ с⁻¹

Со-Мо 11.2 ат.% Мо

Фактор шероховатости электролитических осадков Co–Mo 100–300 Ch. Fan, J. Electrochem. Soc. **141** (1994) 382 (*импедансные измерения*)

Импедансные измерения (Со-Мо и Ni-Re)

 $C_{\rm dl} = 2127$ мк Φ см⁻² видимой поверхности (f = 106 ?)

Двустадийный процесс с адсорбцией промежуточного продукта, модель Фрумкина–Мелик-Гайказяна

• Ni–Re

 $C_{\rm dl} = 86 \, {\rm мк} \Phi$ см⁻² видимой поверхности

$$(f = 4 ?)$$

Потенциостатические условия *E* = -0.1 В (о.в.э.)

Феноменологическое моделирование реакции выделения водорода на Со–Мо-катодах

• Реакция Фольмера $H_2O + e \rightarrow H_{at} + OH^-$

$$v_{\Phi} = v_{o\Phi} \left\{ \frac{1 - \theta_{H}}{1 - \theta_{paBH,H}} \exp(-\frac{\alpha_{\Phi} F \eta}{RT}) - \frac{\theta_{H}}{\theta_{paBH,H}} \exp\left[\frac{(1 - \alpha_{\Phi}) F \eta}{RT}\right] \right\}$$

• Реакция Гейровского $H_{at} + H_2O + e \rightarrow H_2 + OH^-$

$$v_{\Gamma} = v_{o\Gamma} \left\{ \frac{\theta_{H}}{\theta_{\text{равн,H}}} \exp(-\frac{\alpha_{\Gamma} F \eta}{RT}) - \frac{1 - \theta_{H}}{1 - \theta_{\text{равн,H}}} \exp\left[\frac{(1 - \alpha_{\Gamma}) F \eta}{RT}\right] \right\}$$

• Реакция Тафеля $H_{at} + H_{at} \rightleftharpoons H_2$

$$v_{\mathrm{T}} = v_{\mathrm{oT}} \left[\left(\frac{\theta_{\mathrm{H}}}{\theta_{\mathrm{pabh},\mathrm{H}}} \right)^2 - \left(\frac{1 - \theta_{\mathrm{H}}}{1 - \theta_{\mathrm{pabh},\mathrm{H}}} \right)^2 \right]$$

• Условие стационарности

 $v = v_{\Phi} = v_{\Gamma} + 2v_{T}$

- Подстановка в условие стационарности выражений для реакций Фольмера, Гейровского и Тафеля приводит к квадратному уравнению относительно θ_H, что позволяет выразить скорости элементарных стадий и ток, протекающий через катод.
- Оптимизация модели проводилась методом нелинейной регрессии (MathCad 15[®]). Итоговое выражение содержало 4 параметра, подлежащие оптимизации $i_{o\Phi}$, $i_{o\Gamma}$, v_{oT} и $\theta_{\text{равн,H}}$ ($i_{o\Phi} = F \times ; i_{o\Gamma} = F \times v_{o\Gamma}$).
- Математическая обработка результатов проводилась для |η|>0.1В, чтобы пренебречь токами растворения материала катода
- В первом приближении энергетическая неоднородность поверхности катода не учитывалась. Коэффициенты переноса электрохимических стадий приняты равными 0.5.

Результаты расчетов для Со-Мо-катодов

Гейровского без учета реакции Тафеля С учетом стадии Тафеля

Точками выделены экспериментальные данные, проведена аппроксимирующая прямая.

Расчетные кинетические параметры РВВ на кобальтсодержащих катодах

Материал катода	lg i _{оФ} [А/см ²]	lg i _{оГ} [А/см ²]	lg v _{оТ} [моль/см² ×с]	θ _{равн,} Н	Остаточная дисперсия
Со–Мо (41 ат. % Мо)	-4.41	-3.36	-4.96	0.999	3.4×10 ⁻⁸
Со	-5.91	-4.02	-3.31	0.814	1.0×10^{-8}
Со-W (18 ат.% W)	-5.01	-1.36	-4.37	0.988	3.3×10 ⁻⁸

Результаты расчетов для Ni–Re-катодов

Попытка учесть реакцию Тафеля (по аналогии с Со–Мокатодами) не привела к положительному результату: *v*_{0,} _T оказалась отрицательной, что лишено физического смысла. Было предположено, что при протекании реакции происходит существенная диффузия H_{ar} вглубь материала катода (наводороживание).

 $v_{\text{наводороживания}} = k \times \theta_{\text{H}}$

Условие стационарности:

 $v = v_{\Phi} = v_{\Gamma} + 2v_{T} + v_{дифф, наводороживание}$

Расчетные кинетические параметры РВВ на Ni-Re катодах

Материал катода	$\alpha_{\Phi} = \alpha_{\Gamma}$	lg $i_{o\Phi}$ [A/cm ²]	lg i _{оГ} [А/см ²]	<i>v</i> _{оТ} моль/см² ×с	lg $k_{\text{навод}}$ [моль/см ² ×с]	$\theta_{\text{равн, H}}$	Остаточная дисперсия	
с учетом только маршрута Фольмера-Гейровского								
Ni–Re (88 ат. %Re)	0.5	-6.35	-2.11	_	_	0.997	6×10 ⁻⁷	
с учетом маршрута Фольмера-Гейровского и наводороживания катода								
Ni–Re (88 ат. %Re)	0.5	-6.41	-3.21	_	-2.97	0.999	3.2×10 ⁻⁷	
Ni–Re (70 ат. %Re)	0.5	-6.49	-3.09	_	-2.45	0.999	1.6×10 ⁻⁷	
с учетом маршрутов Фольмера-Гейровского, Фольмера-Тафеля и наводороживания катода								

Ni–Re (88 at.	0.6	-6.68	-2.31	2.4×10^{-8}	-2.78	0.999	6.2×10 ⁻⁷
%Re)							

Устойчивость предложенных систем в процессе электролиза (на примере Fe–Mo катода, самая неустойчивая система)

При электролизе в 0.1 М растворе гидроксида натрия по данным XPS происходит некоторое удаление молибдена из поверхностного слоя катода. Уменьшение каталитической активности компенсируется увеличением $S_{\rm uct}$ катода (*dealloving. selective leaching*).

Для Со–Мо-катодов отмечается некоторое количество молибдена в 1.0 М растворе NaOH после электролиза (0.11 мг дм⁻³, 3 часа опыта), кобальт не обнаружен (при 25°С)

Для Ni-Re-катодов ни никель, ни рений в растворе после электролиза не обнаружены (25°С).

В кислых растворах наблюдается заметное растворение никеля.

Требуются более длительные испытания катодов, особенно при повышенных температурах.

Сравнение синтезированных катодных материалов с другими системами, предложенными в литературе

Материал катода	Способ получения	Раствор	t, °C	Плотность тока РВВ при катодном перенапряжении, <i>i</i> ×10 ³ , A см ⁻²		
				125 мВ	150 мВ	175 мВ
Ni–Mo	Электродуговая плавка	1.0 M NaOH	25	0.6	1.0	1.6
Ni ₂ P	Химический синтез	1.0 М КОН	25	1.0	1.8	3.5
Mo ₂ C	Коммерческий образец	1.0 M KOH	25	1.0	2.0	3.5
MoB	Коммерческий образец	1.0 M KOH	25	~0.5	1.0	2.0
NiFeS	Электроосаждение	6.0 M NaOH	25	20	50	85
Со-Мо	Электроосаждение	1.0 M NaOH	22	6.5	12.3	22.4
Ni–Re	Электроосаждение	1.0 M NaOH	22	1.4	5.2	15.3

Выводы

- Системы, содержащие тугоплавкий металл и металл группы железа и получаемые электроосаждением, перспективны в качестве катодов РВВ в щелочных средах.
- Полученные электроосаждением системы содержат металлы в нулевой степени окисления.
- Увеличение скорости РВВ связано как с увеличением истинной площади поверхности катода, так и с собственным электрокаталитическим эффектом.
- Маршрут РВВ на исследуемых сплавах сложен: нужно, по крайней мере, учитывать реакции Фольмера, Гейровского и Тафеля, а также, в случае Ni–Re-катодов, и процессы диффузии Н_{ат} вглубь материала катода.
- Синтезированные материалы обладают достаточной устойчивостью при 25°С в течение нескольких часов, однако для оценки возможности их практического применения необходимы дополнительные испытания.
- Величина каталитического эффекта, обнаруженного на синтезированных образцах, сопоставима с результатами, приведенными в открытой научной периодике.

Большое спасибо за внимание!