Синтез нанокомпозитного материала Pd/PPy и его применения в органическом катализе

Воротынцев М.А., Золотухина Е.В., Магдесиева Т.В.

Université de Bourgogne - CNRS, Dijon, France МГУ, химфак, Москва ИПХФ РАН, Черноголовка РХТУ, Москва

Inorganic nanoparticles: new physical and chemical properties Requirements:

- Uniform and controlled size of nanoparticles
- High density of particles in space
- Stability to aggregation (metals!)

Protective (solid / liquid / adsorption) layers

Strong effect on properties of particles

Need in "inert" stabilizing means

Composite materials

Polymer + incorporated inorganic nanoparticles Transition metals, their oxides, salts...

Applications:

- Micro/nanoelectronic elements
- Sensors
- Nonlinear optics
- Catalysis
- Electrocatalysis (fuel cells...)

Nanocomposites: conjugated polymer-metal Conjugated (conducting/electroactive) polymers: Polypyrrole, polythiophene, polyaniline, polycarbazole

- Inexpensive materials
- Simple synthesis (chemical or electrochemical polymerization)
- High environmental stability
- Controllable morphology and physicochemical properties
- Electronic conductivity and redox activity
- High (nano)porosity
- Thermal stability

Synthesis of nanocomposite materials: metal/conducting polymer

Electrochemical method-1:

1) Electrodeposition of polymer film. 2) Electrochemical or chemical decomposition of metal precursor

Electrochemical method-2:

Synthesis of nanoparticles. 2) Solubilization.
 Electropolymerization + incorporation

Chemical method:

Synthesis of nanoparticles. 2) Solubilization.
 Chemical polymerization

Our goal:

To synthesize composites where monodisperse metal nanoparticles without a protective layer are uniformly distributed with high density inside conjugated polymer

One-step chemical synthesis

Redox reaction between a conjugated monomer (reductant) and a metal precursor (oxidizer)

Rapid sedimentation

Reaction medium: (micro)emulsion? Particles with covered surface

One-phase medium + low concentrations?

S. V. Vasilyeva, M. A. Vorotyntsev et al J. Phys. Chem. C, 2008, **112**, 19878

S. V. Vasilyeva, M. A. Vorotyntsev et al J. Phys. Chem. C, 2008, **112**, 19878

Composite polypyrrole - palladium

S. V. Vasilyeva, M. A. Vorotyntsev et al J. Phys. Chem. C, 2008, **112**, 19878

EDS-SAD

d(PPy): 200 nm; d(Pd): 2-3 nm

Composite polypyrrole - palladium

TEM

S. V. Vasilyeva, M. A. Vorotyntsev et al J. Phys. Chem. C, 2008, **112**, 19878

Composite polypyrrole - palladium Reaction: dilute Pd(OAc)₂ + excessive Py in water

TEM

d(PPy): 20-150 nm; d(Pd): 2-3 nm

SEM

XPS + ICP: 20-25 wt. % Pd

V. A. Zinovyeva, M. A. Vorotyntsev et al Adv. Funct. Mater., 2011, **21**, 1064

Composite polypyrrole - palladium

Reaction: dilute $Pd(NH_3)_4Cl_2$ + excessive Py in water

V. A. Zinovyeva, M. A. Vorotyntsev et al Adv. Funct. Mater., 2011, **21**, 1064

V. A. Zinovyeva, M. A. Vorotyntsev et al Adv. Funct. Mater., 2011, **21**, 1064

IR-ATR

V. A. Zinovyeva, M. A. Vorotyntsev et al Adv. Funct. Mater., 2011, **21**, 1064

Composite polypyrrole - palladium

Reaction: dilute $Pd(NH_3)_4Cl_2$ + excessive Py in water

V. A. Zinovyeva, M. A. Vorotyntsev et al Adv. Funct. Mater., 2011, **21**, 1064

Polypyrrole particles : 30-150 nm Nanoparticles of Pd : < 2 nm (constant!) V. A. Zinovyeva, M. A. Vorotyntsev et al Adv. Funct. Mater., 2011, **21**, 1064

V. A. Zinovyeva, M. A. Vorotyntsev et al Adv. Funct. Mater., 2011, **21**, 1064

XPS

Chemical composition: XPS, EDX, ICP, CHNS Pd: 35-40 wt.%

V. A. Zinovyeva, M. A. Vorotyntsev et al Adv. Funct. Mater., 2011, **21**, 1064

Composite Pd/PPy/CNT: polypyrrole – palladium - carbon nanotubes

Conclusions

Simple, inexpensive and well-reproducible method towards nanocomposite materials with conjugated polymer matrix via one pot and one step procedure.
Broad range of materials: dispersed elements of transition metals (Pd), salts (Prussian Blue, Cul)...

Formation of great number of Pd nanoparticles uniformly dispersed inside PPy matrix.

No protective layers around Pd particles.

Sizes of both polypyrrole spheres (30–150 nm) and Pd particles (1.2–3 nm): controlled by reaction conditions.

Pd-полипиррольный нанокомпозит как катализатор образования С-С связи

Преимущества Pd/PPy нанокомпозита:

- Каталитическая поверхность, свободная от адсорбатов
- Система вариабельна в плане геометрических параметров частиц (*d PPy глобул* (28 и 93 нм), *d частиц Pd* (1.2 – 1.4 нм), содержание Pd в глобулах (34 и 42 масс. %))
- Отсутствие токсичных лигандов
- Композит устойчив в водном растворе

Test-reaction - Suzuki coupling

PPy spheres: 93 nm, Pd nanoparticles: 1.3 nm, Pd content in the globule : 34 wt.%

Various aryl halides in Suzuki coupling with NaBPh₄

Pd/PPy dispersion in NMP

d of PPy spheres: 28 nm, d of Pd nanoparticles: 1.3 nm, Pd content in the globule: 34 wt.%

T. Magdesieva, O.Nikitin, M.Vorotyntsev, et al. / J. Molecular Cat. A: Chemical 353/354 (2012) 50

Comparison of Pd/PPy globules: 93 or 28 nm ?

Pd nanoparticles: 1.3 nm, Pd content in the globule : 34 wt.% 100°C, 4 h, NMP

Comparison of Pd/PPy with different Pd content

diameter of PPy spheres	28 nm	28 nm	
Pd nanoparticles size distribution:			
	60 50 60 50 60 50 50 50 50 50 50 50 50 50 5	40 30 20 10 0,6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 size, nm	
Pd content in the PPy globule:	34 %	42%	
Pd mol% respectively to PhBr:	1 mol %	1 mol %	
The yield of biaryl in p-CH ₃ C ₆ H ₄ Br + NaBPh ₄ coupling (NMP, 100°C, 4 h):	84%	83%	
The yield of biaryl in PhBr + NaBPh ₄ coupling (NMP, 100°C, 4 h):	96 %	95 %	

Leaching tests

Suzuki coupling in water

Pd/PPy (🛛 0.1 mol % of Pd as calculated to PhBr), d of PPy spheres: 28 nm, d of Pd nanoparticles: 1.3 nm, Pd content in the globule : 34 wt.%

2·10⁻⁴ mol ArHal, 0.5·10⁻⁴ mol NaBPh₄, 10⁻³ mol Na₂CO₃, 100°C

T. Magdesieva, O.Nikitin, M.Vorotyntsev, et al. / J. Molecular Cat. A: Chemical , 353 (2012) 50

Possibility of recycling:

Pd/PPy (X 0.1 mol % of Pd as calculated vs. PhBr), d of PPy spheres: 28 nm, d of Pd nanoparticles: 1.3 nm, Pd content in the globule : 34 wt.%

Pd/Ppy– Catalyzed Sonogashira Coupling

ArHal	PhI	PhBr	PhBr*	<i>p</i> -NO ₂ C ₆ H ₄ Br	<i>p</i> -NO ₂ C ₆ H ₄ I
PhC≡CPh, %	70	66	76	78	86
ArHal, %	31	32	22	19	16

*6h

PhC≡CH (0.3·mmol), ArHal (0.2 mmol), Na₂CO₃ (1 mmol), Pd/PPy (1 mol. %), CuBr (2 mol. %), NMP, 100°C, 4 h.

T. Magdesieva, O.Nikitin, M.Vorotyntsev, et al., Mend. Commun., 2013, v. 22, p. 305

Pd/PPy catalyzed aryl halides cyanation with K₄Fe(CN)₆

T. Magdesieva, O. Nikitin, M.Vorotyntsev, et al. / Electrochimica Acta, 2014, 122, 289–295

Cyanation of aryl halides in water

Morphology of the catalyst and yields of nitriles

Conditions		d(Pd), nm
Initial value after composite synthesis		1.25±0.15
Extracted after catalysis of cyanation of		1.08±0.08
4-NO ₂ C ₆ H ₄ Br, Na ₂ CO ₃ ,	87% yield	No change of the size or morphology
Extracted after catalysis of cyanation of		Pd nanoparticles are mainly located
4-NO ₂ C ₆ H ₄ Cl, Na ₂ CO ₃ base,	36 % yield	outside PPy globules and form
		agglomerates of 30 nm in diameter
Extracted after catalysis of cyanation of		2.24±0.27
4-NO ₂ C ₆ H ₄ Br, K ₃ PO ₄ base,	34% yield	Significant number of enlarged Pd
		particles

Pd/PPy for catalytic arylation of heteroaromatics

E = O, S $X = CH, N$							
N°	Heteroaryl	Aryl/ Heteroaryl bromide	Product	Conversio (GC-MS)			
1	п-Ви	Br-COMe		100* %			
2	n-Bu E	Br	n-Bu E CN	100 %			
3	п-Ви	Br	n-Bu	90 ^{**} %			
4	п.Ви	N Br		100*** %			
5	п-Ви	Br		90** %			
6	п-Ви	Br-CH3	n-Bu Co-CH3	50 %			
7	п-Ви	Br		100 %			

E = O, S

V. Zinovyeva, M. Vorotyntsev, J.-C. Hierso Adv. Funct. Mater., 2011, 21, 1064

Выводы:

- Pd/PPy нанокомпозит –экологичная, синтетически доступная альтернатива гомогенным Pd катализаторам с фосфиновыми лигандами;
- Pd/PPy проявляет высокую каталитическую активность в реакциях образования связей C(sp²)-C(sp²) и C(sp²)-C(sp) :
- Сузуки-Миаура: для арилиодидов, бромидов и хлоридов, как в органических растворителях, так и в воде;
- > Соногашира;
- Экологичное цианирование нетоксичным K₄Fe(CN)₆ в воде (для арилиодидов, бромидов и хлоридов,
- > Кросс-сочетание арилбромидов с гетаренами.

Выводы:

- Каталитическая активность зависит от морфологии катализатора; оптимальный вариант: РРу сферы диаметром около 30 nm, содержащие наночастицы Pd диаметром около 1.2 nm;
- Морфологию композита можно настраивать путем варьирования условий синтеза: соотношение мономер/ окислитель; время полимеризации, концентрация реагентов ;
- Содержание Pd внутри PPy глобул не влияет на каталитическую активность, если общее количество Pd постоянно;
- «Вымывания» **Рd из PPy глобул в** ходе каталитичского цикла не происходит ; **возможно повторное** использование катализатора

Благодарность:

к.х.н. О.М. Никитину (МГУ, ИНЭОС);

д.х.н. Е.В. Золотухиной (ИПХФ РАН, Черноголовка)

асп. О.А. Левицкому (МГУ)

Thank You for your attention !

Acknowledgement:

This work was supported by Russian Foundation for Basic Research (Projects № 09-03-01172, 012-03-00797)

